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§ 1. Introduction.1

The aim of lhe present paper is to give a contribution to the 
study of the connection between the so-called summability 
function ip (<r) and the order function [¿(a) of an ordinary Dirich- 

00

let series /'(s) = , ann \ Before stating the results of the paper
Il = 1

we shall recall the definitions of these functions and some known 
theorems.

Let f(s) = y ann_s be an ordinary Dirichlet series which is 
neither everywhere divergent nor everywhere convergent. Let for 
every integer r>0 the number År denote lhe abscissa of summa
bility of the rth order, in particular Ao the abscissa of convergence. 
Then, as shown by the author ([2], and [3], pp.99—104),

(1) 0<2r-2r + ]<l and Ar-Ar + 1 ¿ar+1-2r + 2 (r = 0,1,2,-• •)• 

When we follow M. Riesz and consider summability of arbitrary 
order r 0, the abscissa 2r exists as a function of r in lhe interval 
0<r<oc. In generalization of the above inequalities lhe function 
a = Àr is a non-increasing continuous convex function with numer
ical slope < 1 (see [6], pp. 57 and 60, and [8], p. 118). We introduce 
the number Q(> — oc) as lhe limit Q = lim Âr. It follows from

r->oo

the results just mentioned that when r increases from 0 to oo, 
then Ar will be either a strictly decreasing function which tends 
to for r->oo, or Âr will from a certain step r0, i. e. for r]>r0, 
be constant = Q.

We define now for every number a in the interval Q <a <oc 
the number r = ip (a) as the greatest lower bound of those values 
r'>0 for which Ar,< a. The function r = ip (a) is called the summa
bility function of the Dirichlet series. It is equal to 0 for <7> Ao and in 
the interval -Q <a< Ao (when we suppose that Ï2 <Âo) it is simply

1 This paper is based on notes left by Professor Harald Bohr. The manuscript 
has been prepared by Dr. Erling Følner.
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4 Nr. 4

the inverse function of a = /-r. Hence it follows from the above 
results that r = ip (cr) is a continuous convex function which in 
the interval ß<cr<Ä0 is strictly decreasing with.numerical slope 
> 1, i.e. with a left derivative ip' (z0— 0) < — 1 at the point a — Âo. 
Further, if /.r is constant = from a certain step r0, then 
y(cr)->r0 for cr->i2; otherwise ^(cr)->oc for ít->/2.

Contrary to the abscissa of convergence 20, the abscissa Í? has 
a simple function theoretical meaning (H. Bonn [2], and [3], p. 124; 
M.Riesz [7]). Indeed, for every a0> Í2, the function /’($) represen
ted by the series is of finite order with respect to / in the half 
plane a>a0, i.e. there exists a number Z>() such that

(2) /-(a + ÍZ) = O(|i|')

when 11\ -*oc, uniformly for all <t>ct(), whereas /’(,$•) is not regular 
and of finite order in any half plane o-><t0 where an<i). For 
every a> Q we define the number pt (<r) as the greatest lower bound 
of those values Z^*0 for which (2) holds for this value of a. 
This function /z (cr) is called the order function, or the Lindelöf 
¿¿-function, of f(s). It is equal to 0 for cr>A0H~l because the 
Dirichlet series is absolutely convergent for o> Zo + 1. It follows 
from the Phragmén-Lindelôf theorem that the function // (<j) is a 
continuous convex function. Thus, denoting by M/i (£^o+ O ,lie 
smallest number with the property that /¿(a) = 0 for <r>w», the 
function /¿ (cr) is (when Í2<co//) strictly decreasing in the interval 
Ï2 < or < o)/t. We mention that pt (a0) (£? < a0 < oc) is also the order 
of f(s) in the half plane a><r0, i.e. the greatest lower bound of 
those values Z>0 for which (2) holds uniformly for all cr>oro.

As to the connection between ip(o) and //(<?) it is known (see 
[6], pp. 49 and 53) that

ip (or) < pi (o’) < ip (o’) + I.

The present paper deals with the problem whether the above 
results concerning the functions ip(o) and /¿(o) and the connection 
between them are the best possible, i. e. whether conversely 
for two functions ip(a) and ft (a) which have all the properties 
mentioned above there exists an ordinary Dirichlet series 

with ip((i) as summability function and pi (<t) as 
order function. No complete answer is obtained, but it is shown 
that if we impose on the function pi (a) the additional condition

*



Nr. 4 5

that it, too, has a numerical slope > 1 in the interval in which it is 
strictly decreasing, i.e. that (when D<co/Z) we have //'(co/z— 0) 
< — 1, then the answer is in the affirmative. In other words, we 

t shall prove the following

M ain Theorem. Let y> (a) be a continuous convex function 
defined in an interval <?>£?(> — oc) and equal to 0 to the right 
of a certain finite abscissa and (if Q) such that
V»' (coy —0)< —1. Further, let p(o) be a continuous convex function 
defined in the same interval a> Q and equal to 0 to the right 
of a certain finite abscissa co„>£? and (if w „> £?) such that 
fi (m^ — 0) < — 1. Finally, let

y) (o') < /« (a) < i/> (a) + 1
for all a > Q.

Then there exists a Dirichlet series f(s) = s which has
the given functions ip (a) and ft (a) as summability function and 
order function, respectively.

} We remark that as a consequence of the assumptions of the
theorem we have a>1f) < o>fl < + 1. The condition
which according to the above results is necessary whether 
//'(co» — ())< — 1 or not, therefore has not been included in the 
theorem.

We do not know whether there exist ordinary Dirichlet series 
/*(s) = x c/n/« s for which the order function p(a) is not identic
ally zero and does not satisfy the condition //'(co/z— 0) < — 1. 
For the zeta-series with alternating signs

c (s) ( i - 21 -’) = Z (-1 )n+1 >r”
Il = 1

it is known that p(a) — 0 for a > 1 and //(o') = — a for cr<0.

The question as to whether //' (a>/( — 0) <—1 therefore amounts to 
whether /«f-j = 0 fand hence u (cr) = 0 for a >7 and /«(o') =

—o' for CT<“l,i.e. to the Lindelof hypothesis £ + it] — 0 (| t |e)

for every e > ().
If we restrict our attention to the summability function y (o'),
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we immediately see from the Main Theorem, that the known 
results are the best possible, i.e. any continuous convex function 
ip (a) defined in an interval a>i2(> — oc) and equal to 0 to the 
right of a certain finite abscissa Q and (if m^> Í2) such <
that ip' — 0) < — 1, is the summability function of an ordinary 
Dirichlet series. Indeed, we have only to apply the Main Theorem, 
choosing //(o’) = y>((7). This result generalizes a result of the 
author ([3], pp. 104—110) concerning the abscissae of summability 
of integral order, according to which the inequalities (1) are the 
best possible.

In the proof of the Main Theorem certain basic examples 
play a decisive role. In these examples Q = —oo (so that we are 
dealing with entire functions) and the y’-curve as well as the 
//-curve are half lines as scon as they have left the real axis, i. e. 
in the intervals— oc < cr < coy, and — oo<a<(o/l, respectively. It 
appears immediately from the above inequalities that these half 
lines must be parallel and that the //-line must lie above or coin
cide with the y>-line. Further, their distance measured on a vertical 
line must be < 1. Our basic examples correspond to those extreme 
cases where the two half lines coincide or have the vertical <
distance 1. In the special case where the numerical slope a of the 
half lines has its minimum value a — 1 examples have already been 
constructed by the author ([4], pp. 10—14, and [5], pp. 713—720). 
Generalizing these examples we construct in § 2 and § 3 examples 
for an arbitrary a> 1. (The reader need not know the examples 
for a = 1.)

In § 4 we construct from the extreme cases in § 2 and § 3 all 
intermediate cases where still both the y-curve and the //-curve 
are half lines to the left of a>7/) and coZi, respectively. The Dirichlet 
series obtained in § 4 are to serve as our “bricks” in the final 
construction in § 6 in which a Dirichlet series is formed by linear 
combination of denuinerably many such series. § 5 is inserted 
for the purpose of giving two lemmas concerning the summability 
function and the order function of a Dirichlet series obtained by 
linear combination of denuinerably many Dirichlet series. 4
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§ 2. Construction, for an arbitrary «>1, of a Dirichlet
\ / \ Io for > 0series with v (CT) = (CT) = =

I — aa for a< 0.

Let Pi, p2» j°3»’* - l)e a sequence of positive integers which 
satisfy the condition

for all m and let

Pm + l^i^+OPm

where for brevity’s sake we have put - = 0 (0<0< 1). We con- 
a

sider the Dirichlet series

ann ~ Pl (Pl + dl) p2, —“I" (/>•’+2 <0 '+••• 
71 = 1

+ I'm ‘ ("') */'», + <Q (Pm + 2 -------- F ( - 1 )”'

+ --- = Î«/O-
nt = 1

Here we have used the notation u for the m111 difference with 
span d, i. e.

^■"P = •+(-d"(5«p+^.

For such differences we shall use the known inequality (see for 
instance H. Bohr [4], p. 15)

(2) I d"' (/>-’) I < 2"'“'' I s 11 s + 1 I ... I11 /,

which is valid for d> 0, p > 0, a + h > 0, and h = 0, 1,2, ■ • •, m.
The above series has previously been considered by the author 

([3], pp. 94—99), and it was shown that its abscissae of summa
bility of integral order h are determined by

^=-/i0 (/i = 0,1,2,•••).

Thus Q =— oo, and ip(—hO) — h for h = 0,1,2, •••. Since y>(cr) 
is convex, this implies that y> (c) =—aa for a < 0, and hence 
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ip (a) = 0 for cr>0. Thus it only remains to prove that it (o') = 
— ao for o < 0, which implies that //(o') = 0 for o > 0.

Since // (a)>v>(a) it is enough to show that //(a) <— ao for 
cr < 0. Further, in order to prove this latter relation it suffices to 
prove that
(3) f(s) = O(\t\'1) for ct=—/i0 4-£,

where h runs through the numbers 0,1,2, • • • and e > 0 is arbi
trary. Indeed, the inequality //(—hO + f) <h together with the 
continuity of ft (cr) implies that //(—hO)<h, and this latter in
equality for h = 0, 1,2,-•• together with the convexity of //(o) 
implies that //(cr) <— ao for all or<O.

In the proof of (3) we shall use the fact that X 2>,„‘ ¡s 
convergent for every £>(). This fact, however, follows at once 
from (1) in view of which

We write
í(S) = ¿/7.(P;s)+Í<(/O.

m =1 in = It + 1
h

where the sum /¡ (.$•) = .X’zl'P (p~s) consists only of a finite num- 
m = 1

her of terms ann * and therefore is bounded on every line o = <r0. 
oc

In the series Y J™ (/>„/) we shall apply Hie above inequality (2) 
m = h + 1

to each of the terms 4™(PmS)’ ni — li + 1, h + We obtain 
for m> h and .<? on the line a =— hO-\-e (where o + h > 0)

i coo i £ im~h h i *+11 • • • i *+* -11 <

2'* I s11 s + 1 I ■ • ■ I « + h - 1 I + " e~e-h =

2-/I|S||S+ 1 I • - - |s+/t— 1 |2">-K.
00

Since X?2ntp~£ is convergent we see that ,X d"' (pm‘s) converges 
m = h + 1

absolutely for o =—hO-\-E and that its sum (s) satisfies the 
relation f2 (s) — 0 (| t f'). Finally, since /(s) = fv (s) + (s), we see 
that f(s) = O(|/p) for c = — hO-\-e, as we had to prove.
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§3. Construction, for an arbitrary a>l, of a Dirichlet 
series with

I 0 for ff>0 i 0 for </> —
V (a) = and (a) = "

— a<r for a < 0 1 — ao for a < -= v = a-
In view of the general properties of the summability function 

and the order function it suffices to show that the constructed 
series has the right order function and the abscissa of convergence 
Âo = 0. Thus our task is to construct a Dirichlet series with 
Z() = 0 and £? = — oc and with the given function p(cr) as order 
function.

We start again with a sequence of positive integers Pt<p2< 
p3 <• • • which increase rapidly. We assume here that they increase 
so rapidly that A 2mpñe converges for every e>0 and so that

¿ 2"lPJne = °(Pm£) and 2‘V °0A/)
in = M + 1

for M -> oc and every e > 0 and L>0. Next, we choose integers 
lm and dni of the orders of magnitude p“n and l, respectively. 
It will be convenient to choose

+ 1 and llm = U 1K

Further, we put
fm = Win

and choose the numbers q of a slightly smaller order of magni
tude than the pm. We set

Pm
(m + 1)3

We remark that the pm from the beginning must be chosen so 
that certain inequalities which on account of the above demands 
are fulfilled for large ni will be fulfilled for all in. The inequalities 
to which we refer (we shall not write them out explicitly) are 
those which express that the term groups given by the braces 
(• • • } in the series immediately below do not overlap.

Our Dirichlet series f(s) = zf s is now constructed from 
term groups the mth term group of which 
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consists of altogether (çm+1) (/n + 1) terms a n~ s. These terms 
are distributed in qm+ 1 smaller term groups [ • • • ]m>p O'= 0,1, 
2,- • -,qin) each of which apart from a complex sign is simply an 
mth difference (with span c/m) and thus contains m +1 terms 
on7z \ More specifically, our series is defined in the following way :

where for in >1, 0 < v< qm the square bracket [• • has the 
meaning

[ • • • ]«., = (j,n + V (,n + 1 ) JZ(/nl+ + 0 dm)~S =

0 r(m 4 1) (/m + v + 1 > dm'

+ ••• + (- 1 )"' (zm + v (m + 1 ) dm + .

We shall now prove that this series x>>, an7? s possesses all the 
desired properties. We divide the proof into three steps.

Io. We prove first that our series has the abscissa of conver
gence z0 = 0. Since | an | = |/^"| = 1 for n = lm(m = 1,2, •••) 
we see that the series is divergent at the point s = 0 and it is 
consequently plain that Ao>(). In order to show that ¿0<0, i.e. 
that the series is convergent for a > 0, we first show that our 
series is absolutely convergent for a > 0 when we preserve the 
square brackets (but not the braces). On account of a later appli
cation we shall even show that under preservation of the square 
brackets the series is absolutely convergent in the whole plane. 
We do this by showing the absolute convergence in the half 

_ I 1
plane a > a. =------— for h = 0,1,2,* • •. We write

h
where the first sum only contains a finite number of

m = 1
square brackets In order to prove that the second sum

X

— *s absolutely convergent when we keep the square
in = h +1
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brackets (but not the braces) we estimate each of the g + 1 
brackets in the term with index m>h by the
inequality (2), §2. For m>h and s in the half plane a > ah 
(where a fortiori a + h > 0) we get

< a"-'11 s11 s + 11 • • • I » + /> -11

Hence the sum of the absolute values of the gm + 1 brackets 
[• • ’k» in <• • -}m is estimated by

21 I < (</,„+1 ) 2”*“" HI s+11 • • • I «+-1
V = 0

and consequently, since qm<pm, dm< and lm> p^ by

0) -2| [■ • *lm,rl = 2“h|s| |s+ 1 I-• • |s+ h-1 I 2mp-aa-h+\
V = 0

where o-><T/land m>h. From this inequality we immediately 
infer the stated absolute convergence in the half plane a > ah =

1 in fact, the series V 9,"p~aCT—/l 1 1 is convergent since 
a m

the exponent —aa — h-\- 1 is smaller than — a<yh— h +1=0. Thus, 
in order to show that the series qJt n 5 itself (i. e. the series 
without any brackets whatsoever) is convergent for a > 0, we 
only have to show that the partial sums of [••*]m,v for <r>0 
tend to 0 for m-+oo. That this is the case is, however, obvious 
since the sum of the absolute values of all the terms an 5 in 
[• • dni.p for a > 0 is

7/1

f(s) = 0 ( 11 |h) for a > ah + £.
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In fact, this will immediately imply that Q =— oc and

/i < h — 1 — aoh for h — 0,1,2, • • •,

and next, by help of the convexity of fi (cr) we get 

it (or)< 1—aa for all or<—.” a

For a> olt we write again

/(«) = Z !
Ill 1

X

/l

The first sum {•••},„ contains only a finite number of terms 
m = 1

aRn ~s and is therefore an entire function fi(s) bounded in every 
00

half plane o>a0. In the second sum Y • •} we estimate each 
m = h +1

of the terms {• • -}„((m = /i-f- 1, /i + 2, • • •) by the above inequal
ity (1). For ni > h and .$• in the half plane cr>cr//+£ we get

Since Y 2mpmue is convergent we infer that the infinite series 
00

Y is uniformly convergent in every bounded part of the 
m = h + 1

half plane or>o,/1-f-£. Consequently, since e>0 is arbitrary, the 
function (s) represented by this series is regular in the half 
plane a> ah; furthermore, it satisfies for ah + e < a < (say) 2 (and 
hence of course also in the whole half plane o > ah + e) the 
inequality

/•2(.S') = 0(|i|").

Since /’(s) is obtained as the sum of f, (s) and f2 (s), we see that 
/'(s) is regular for a > oh and equal to O(|/|/l) for <T>cr/i4-£ as 
we had to prove.

3°. We come now to the salient point, namely the proof that 

u (<r) > 1—ao for a<~. Let be an arbitrary abscissa < a a 
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we consider the behaviour of /*(s) at the points sv = <r0+ itM on 
the line a = <t0, where /v are the previously introduced ordinates

— 7tpyl, and we shall (even) prove that for sufficiently large M

(2) I /■(■’.„) I

For this purpose we first determine a positive integer h so that
— 1 1 î ,, ,a. =----------< crn <-. r or M > n we write" a a

~ V / A/ + ' ‘jtn = (Sm) + M (SAf)’
m = l m=M + l

and we shall prove that both the “beginning” and the
“remainder” Byi(sy¡) for M -> oo are equal io while
the A/111 term TAZ(sv) l°r sufficiently large 3/ is numerically 
larger than 2/1v'aff°. In this way the inequality (2) will be proved.

(1) For the “beginning” B^¡(sM) we use a rough estimate. 
The numerical value of each of its coefficients an + 0 is a binomial 

coefficient with in< 3/ — 1 and hence it is < 2‘V ’. Thus

Zl = 1
where

ZAf—i “ Za/—i + 7a/—i 1) (Za/_i ” Lu— 1

for 3f sufficiently large. Hence, since <r0 < 1,

I zMsa/) I < 2Ai—1 i?"_<T° = 0 (2M_1 za/^i) = 0 (2M_1
n = 1

and consequently, since 1—acr0>(),
I

«!/<■’.») = » = » (dr“"”).

(2) For the “remainder” Z?v(sv) we can apply the inequality 
(1) since all occurring in are > M > h and o,0>cr/1. We gel, since

► — a<r0 — /i + 1 < 0,

m = Af + 1
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(3) We shall finally prove that the 47th term '7’v(sv) satisfies 
the inequality

I 7’ is —aCTo

for all sufficiently large 47. The reason for the validity of this 
inequality is that all the terms «„z»--' occurring in
(and there are rather many of them on account of the choice 
of the </m), namely the (<7M+0 (47+1) terms distributed in 
the 1 brackets [•••Jm.v with 47+1 terms in each bracket, 
for sufficiently large 47 “almost point in the same direction’’; 

more precisely: these terms all lie in the angle —— < z? < —. 

We postpone the verification of this fact for a moment and 
shall first show that when once this property is established we can 
immediately complete the proof. In fact, we may argue as follows. 
The sum of the binomial coefficients occurring in each of the 
9M+1 square brackets is equal to 2A/, and every zi occurring in 
the sum belongs to the interval ZM< zz < l'M and a fortiori to 
the interval /w<zz<2Zw when 47 is large. Thus, for sufficiently 
large 47 we have

and this last quantity is larger than 2 t\t U(7° for large 47.
It remains to prove the decisive fact that all terms ann in

TT 7T7’v(sw) lie in the angle—-<p<~ for 47 sufficiently large. That 

this is the case is of course due to our choice of the complex 
signs of the occurring coefficients an=f=0. We consider an arbi
trary one of the qM + 1 brackets [• • 

(/„+ » (.W + 1 ) J' (ZM+ r (M + 1) d,,)—« (>■ = 0,1,2, • • •. </Ai).

Denoting the number Zv/+v(47 + 1)íZ3/ by r = z-(47,v) we gel



(A = O, 1,2, • •Ai)

When we take account 
and insert the known 
once that

of the fact that 0< A < A/and 0<r<c/v 
expressions for c/M, r, qM, we see at

dM
7Cr and for M -> oo

independently of v and A. In view of this, the above for
mula for the amplitudes together with the relation

lim x 1 log (1 + x) = 1 
x->0

yields the result that the amplitudes of the single terms in 
tend to 0 for M->oc. In particular, these amplitudes

71 51lie in the angle—-<p<- for M sufficiently large.
o

Thus, all our statements concerning f(s) = an are proved.

§ 4. Our “bricks”.
We shall now, for an arbitrary a¡>l, construct a class of 

Dirichlet series for which again the y>-curve and /¿-curve when 
they have left the real axis are half lines with numerical slope a, 
but where the vertical distance from the ^-half-line to the /¿-half
line no longer assumes just one of its extreme values 0 or 1, but 
has an arbitrary value between these two limits. At the same 
time we shall perform a trivial translation in the direction of 
the real axis. For the sake of convenience, we characterize a 
function of a which is 0 for co < a < oe and equal to —a (a — co)
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for —oc < a < o) by the symbol {co; a). We shall prove the 
following

Theorem. For arbitrary co, a, and d such that a>l and 

0<d<-there exists a Dirichlet series f(s) =£ann ' with the 
a

summability function [m; a) and the order function {co+d;a}.

In the proof we may evidently assume that co = 0. Also, we

may assume that 0 < d<-. We know that there exist two Dirichlet J a
series (.$) =^> a’ltn s and f2 (s) = A a"n \ where the y- and 
//-functions of the first series are given by

Vi = Pl = «)

while the y>- and //-functions of the second series are given by

We now replace s by sH------ d in f>(s), i.e. we consider instead
(X

of /’2 (s) the function f¿(s) — =¿La'nn • The ar,d

//-functions of ß (s) are given by

V>3= {d — aj and //3 = (d; a).

We shall now show that the series

f(s) = ft (s)+f3 (s) (<+«"') n ' =2?%«"

will satisfy our demands.
First, ß = —oc. Secondly, the summability function ip (or) is 

equal to 0 for cr>0 since both ^_,a„u s and are con
vergent for cr > 0, and y> (cr) — (a) for every negative a since

(a) > y3 (or). (We have used here the fact that the sum of two 
series of constant terms both of which arc summable of the r’11 
order is again a series summable of the rth order, while the sum 
of two series of which the one series is summable of the r111 
order and the other is not, is a series which is not summable of 
the rth order.) Thirdly, the order function // (cr) is equal to 0 for 
a > d since both //t (cr) and //3 (cr) are equal to 0 here, and
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/í (<r) = fi3 (o) for a<d since «;î (<r) > (er). (We have used here 
the fact that the sum of two functions of t which are both 
0(|/p) is again Oflfp) while the sum is not O(|fp) if one of 

► the functions is 0(|f|h) and the other is not.)

§ 5. Two lemmas.
In this section we shall prove two lemmas concerning summa

bility and order of magnitude of Dirichlet series which are formed 
by linear combination of infinitely many Dirichlet series.

Before passing to these theorems we start with the following

Remark. Let

fo CO a(nn_S’ fl <0 =-£’ «n)n_S’ ’ ' •

►

he a sequence of Dirichlet series which we assume to be alt abso
lutely convergent (at least) for a>a0. We assert that it is possible 
to determine a sequence of positive numbers Eo, Elt- • • so that the
infinite series

(1)

are convergent for every sequence e0, ££,••• with

0 < e0 < Eo, 0 < et < , • • •

and that further, when the sums of these infinite series are denoted 
by â2, • • •, the series

(2) e0 fo (0 + ei fi (0 4-----

and the Dirichlet series (obtained by formal calculation from (2))

(3)

’ will be absolutely convergent for a>o0 and have the same sum.
Proof. We put

ZI I n-"" = A'„, Z I «<*> I n-’" = /<„••■
n = l n = 1

Dan.Mat.Fys.Medd. 27, no.4. 9
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and choose the positive numbers Eo, • • • so that the series 
Ze„K„ is convergent. Then

\ eN I ) I if a < oc for a > <t0 
A7, n

so that

where all occurring series are absolutely convergent (cr > cr0). It 
is plain that the conclusion still holds (with the same E ’s) when 
we omit the assumption 0 < eN < EN for finitely many indices N.

Lemma 1. Let

i/o (*) =£ .71 (s) h^ n~s, g2 (s) =£ b™ n~', ■ • •

be a sequence of Dirichlet series (each of which possesses a half 
plane of convergence). Denoting by A(rX) the rth abscissa of sumina
bility of the function (s) (N = 0, 1, 2, • • •) we assume that there 
exists a number r(>0) such that

A[n)<A^= A (N = 1,2, •••).

// follows immediately that the ip-curve of all the Dirichlet series for 
a>A must lie under or on the curve (zl+ r; 1} so that all the 
Dirichlet series must be absolutely convergent for <r>/l + r+ 1, in 
particular for o >71+r-|-2.

Then there exists a sequence of positive numbers et < , e2 <E2,- • •
[where EN (N — 0,1,2, • • •) are obtained from the above remark 
applied to the functions gN(s) (N = 0, 1,2, •• • ) and Z + r + 2 
instead of cr0] such that the Dirichlet series

(4) G (s) = g0 (s) + q gt (s) + e2 g2 (s) 4------Bn n

where

(») lin = b‘-n+^h^+^'’+---

for every sequence e1,e2,--- such that
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(6) O < £t < et, O < £2 < e2, • • •

mill have its rth abscissa of summability equal to the number A. 
t (The series (5) converge and the two series in (4) are absolutely

convergent for cr > A + r + 2 with the same sum G(s). This 
follows immediately from the above remark since eN<EN for

Proof. We have to prove that we can choose the positive 
numbers eN<EN so that the series G(s)—^Bnu s under the 
assumption (6) is summable of the rth order for o>A, but not 
summable of the rth order for any a < A. We divide the proof 
into two parts.

Io. In this part we choose the positive numbers eN<EN so 
that the series G(s) — .2, Bnri~s un(ier assumption (6) is sum
mable of the rlh order for o>A. In order to obtain this result, 
it is obviously enough to secure that the series

6* (s) = 6i f/i (s) + e2 </2 (s) 4----- Bf n s

becomes summable of the r,h order at the point s — A; for when 
both of the series g0 (s) iff n~s and G* (.$) — x Bf n s are 
summable of the rth order for o>A, then their sum G (s) =

' will have the same property. In the proof we shall 
suppose that A = 0. This is of course no real limitation since 
when A + 0 we may replace s by s4-/l. Since the abscissae of 
summability zl^, Aff • • • are all smaller than A, the series 
21 iff, \ iff, • • • are all summable of the rth order. We have

00

(7) ]ff =£f eN iff') (convergent for eN < EN).
N = 1

In our proof we make use of the fact (see [6], pp. 21—22) that a 
00

series N ' an is summable of a given order r if and only if a 
n = i h

certain linear expression Sn = y kv av in the first n terms of the 
V = 1

series (with coefficients kv which depend not only on v but also 
on n and /•) tends to a limit, the summability value of the series, 
for We denote the expression S for the series b^f, 

9*
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X" b^\ ■ • • by T^\ T^\ • • •, respectively, and the expression Sn 
for the series \ B* by 7';' . Then from (7) it follows that

Here, the quantity will for each N = 1,2, ••• tend to a limit 
U^\ the summability value of the series when n->oc.

71 
Hence there exist constants KN such that

We now choose the positive numbers eN<EN so that
PC

converges; then for every choice of the numbers en in the intervals 
0 < ev < the series (8) will be uniformly convergent in n since 
it is majorized by E", e?7 /<A,. Since each of the terms eNT^> 
tends to a limit for n -> oc (namely en U^) it follows that the 
sum 7’’j of the series will also lend to a limit for n-> oo (namely 
U* = eL + e2 + • • •), as we had to prove.

2°. In this part we choose the positive numbers eN<EN so 
that the series G (s) — Bnn~s under the assumption (6) is not 
summable of the rth order for any o<A, i.e. so that the rth 
abscissa of summability is >A. If the series g0 (s) = ^? //0) n * 
(with the rth abscissa of summability A) is not summable of the 
rth order at the point s=A we can use the numbers eN found 
under Io. In fact, we saw that G* (s) = X’ Bn n~s under the assump
tion (6) is summable of the rth order at the point s=A so that 
the series X Bn n~s, which arises by termwise addition of¿ n~"s 
and s, cannot be summable of the rlh order at the point
s = A and therefore must have its rth abscissa of summability 
>A. However, we have not made this special assumption con
cerning the series n~s and as a matter of fact we could 
not make it in view of the applications. Hence we must proceed 
differently, and we shall use the known expression for the rth 
abscissa of summability \ of a Dirichlet series ¿ «nn—s by means 
of the coefficients of the series. In the proof we shall assume that
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the number Z is > 0, say = 1 (since the expression just mentioned 
is only valid when Â.X)). This is of course no real limitation since 
when A + 1 we may replace s by s--A, where A+A = 1. As to 

r this expression of Â by the coefficients of the series we shall only
use the following fact (see [6], p. 45 and [3], p. 86 and [1], 

71
pp. 70—71). There exists a linear expression ¿>n = Y. A-., a„ in the 

v = 1
first n coefficients of the series (with coefficients kv, which depend 
not only on v but also on n and r) such that the necessary and 
sufficient condition in order that the series x, ann~s bave its rth 
abscissa of summability 1 is that

S is not equal to O (n ô) for any <5 > 0, or equivalently 
is not equal to o (/? ) for any <3 > 0.

►

(The expression S here is not, of course, the same as the expres
sion under Io.)

We shall denote the expressions Sn corresponding to the scries 
Y b^ n~s, Y b\P n~s, • • • by 1^\ • • • , respectively, and the 
expression S for the series Y Bnn~s by Since by assumption 
the series //"Yj-5 has its rth abscissa of summability =A—X 
we know that to any given ó > 0 there exist infinitely many
values of n for which

Since each of the series n s (N=l,2, •••) has its rth
71

abscissa of summability A(r^<A = 1 there exists for every
AT = 1, 2, • • • a number > 0 such that

7JY = o(n_zlY-

►

It suffices to show that Tn for a suitable choice of the positive 
constants eN < EN under the assumption (6) for every ó > 0 satis
fies the inequality

for infinitely many values of n. This is equivalent to saying that 
for some sequence of positive numbers which tends
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to 0 there must exist a corresponding sequence of positive integers 
zq < z?2 < • • • such that the inequality

is satisfied for all m = 1,2, As ô-sequence we shall here use 
an arbitrary sequence of positive numbers which tends to 0 and 
satisfies the conditions

ó2 < zi!, 03< min (dt, d2), • • •.

We shall now indicate positive numbers eN<EN with the desired 
properties. We proceed in steps.

First step. We choose a positive integer nt so that

For this n = nt the expressions 7^, 7^, • • • assume certain values,
say A’u, fr12, • • • . We 
e12 < Zs2, • • • so that

choose the positive numbers eu < Et,

is convergent with sum < - n( \ On the analogy of (8) we have

(9) T„ = T<°>+ r, 7<‘> + r, 7<2’ + • • ■ (for 0 <rv < EN).

Hence, for every choice of e2, - • • in the intervals 0 < < <>lt
0 < £2 < e12, • • • we have

Second step. We choose an integer z?2 > zq so that

|r<",l>nï"’’ and also 7fx | Tæl < | n~\

The latter inequality may be obtained since <52<d1. For this 
n = n2 the expressions T^\ ■ • • assume certain values, say 
Zc22, ^23» ‘ ‘ • We choose the positive numbers e22 < E2, ei3< Es, • • • 
so that

00

e2N I ^2N I
N = 2 
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is convergent with sum < - n2 ôî. Then for every choice of et, e2, • • • 

in the intervals 0 < < Et, 0 < eN < e2N (N = 2, 3, • • • ) we have, 
on account of (9),

00

/nth step. We choose an integer nin> so that

►

The latter inequality may be obtained since < min (zlL, • • • ,J t). 
For this n = nm the expressions T['n\ T^n + i\ • • • assume certain 
values, say ^mm, + * * * • We choose the positive numbers 
emm < Em> em, m + 1 < Em + 1’ * ' ’ so thal

is convergent with sum <-nm\ Then for every choice of q, e2, • • • 
o

in the intervals 0 < q < • • •, 0 < em_ j < Em_1, 0 < eN < emN
(N = m, m 4 !,•••) we have, on account of (9),

It appears from the above that the numbers

eN = min{e1N, • • •, evv} (N=l,2,---)

may be used to satisfy our demands under 2°.
Finally, for each N we choose the smaller one of the two 

numbers eN found under Io and 2° as our final These eN satisfy 
the demands in Lemma 1. This completes the proof of Lemma 1.
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Lemina 2. Le/

h0 (•*>') =JE c¡¡° ns, /it (s) =£ 4° n s, h2 (s) =2J cn2) n S>- '■

be a sequence of Dirichlet series (each of which possesses a half 
plane of convergence). We assume that all the functions hN(s) are 
regular and of finite order in a certain half plane o>a{}\ further, 
denoting their orders of magnitude in this half plane by pN, we 
assume that

pN < /i0 = p for N = 1,2, • • •.

It follows immediately that the ip-curves of the Dirichlet series for 
a > ct0 must lie under or on the curve {a0+/z; 1} so that all the 
Dirichlet series must be absolutely convergent for a > or0 + p + 1, in 
particular for o’ > <r0 + /z + 2.

Then there exists a sequence of positive numbers e{ < E,, e2 < E2, ’ ’ ’ 
[where En(N = 0, 1,2, • • •) are obtained from the previous remark 
applied to the functions hN (s) (N = 0, 1, 2, • • •) and <r0+ p+ 2 
instead of ct0] such that the function

(10) H(s) = hQ (s) + Ei ht (s) 4- e2 h2 (s) 4----- Cn n~s,

where

(11) Cn = <0)+el4,)+£2c<l2>+---

for every sequence eife2l-‘' such that

(12) 0 < el < et, 0 < e2 < e2, • • •

will be regular in the half plane o> a0 and in this half plane 
have the order of magnitude p. (The series (11) converges and 
the two series in (10) are absolutely convergent for o,><r0+¿í + - 
with the same sum II (s). This follows immediately from the 
previous remark since eN < L\- for N = 1,2, •• •.)

Proof. We have to prove that we can choose the positive 
numbers eN<EN so that the function

H (s) = h0 (s) 4- hi (s) 4- £2 h2 (s) 4-----

under the assumption (12) will be regular in the half plane a > cr(l 
and in this half plane satisfy the relation
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H (s) = O(\t\fl + Ö)

for every <5 > 0 but not for any ô<0. We divide the proof into 
two parts.

Io. In this part we choose the positive numbers eN<EN so 
that the function H (s') under the assumption (12) will be regular 
in the half plane a > a0 and in this half plane equal lo O (| /1ó) 
for every ó > 0.

In the proof we shall use only that /zN< /z for N = 0,1,2, • • • 
and not that /zN < /z for N = 1,2, • • •. Let <52, • • • be a sequence 
of positive numbers which tends to 0. On account of the assump
tions there exist positive constants ÆnüS, (m — 1,2,- • •; AT = 0,1,2, • • •) 
such that

|/iN(s)l<KmN(|/|+l)" + ,i- for o>a„.

We choose the constants eN<EN so that

». is convergent for every m 1,2, • • • . This may be done by sub
jecting the ev to the following demands (only in a finite number 
for each ev)

rz 1 rz 1 rz 1
ei'kn<'2’ e2^ti2<'z|’

e3 ^23

e3 ^33 < g » ’ ’ *

Then we have under assumption (12)

I H (s) I < ( I Zio («) I + «i IM«) H------- H I /?,„_! (s) I ) + (em I /i;n (s)|+---)

( 111 + 1Y + ôm + (S eN ( 111 +1 Y1 + <

A2(|/|+l)/z + ó" for o>a0,

where .4( and /12 are constants.
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From this follows our above statement concerning the order of 
magnitude of Fl (s). In order to see that // (s) is regular for a > cr0 
we remark that the series

/joØ+ej h1(s) + c2 7i2 (s)4-----

in the half strip a>o0,\t\<T, where T is any fixed positive 
number, will be majorized by the series

so that it is uniformly convergent in this half strip.
2°. In this part we choose the positive numbers eN<EN so 

that H(s) under the assumption (12) is not equal to 0 (|/|/¿_ f5) 
in the half plane a > cr0 for any d > 0, or, in other words, that 
H (s) is not equal to o (| t\/l~ö) in the half plane a > a0 for any 
<5 > 0. Thus it suffices to show that to every ô>0 there exist 
points s = o4- it with a > a0 and 11\ arbitrarily large such that

We do this by showing that for a certain sequence of positive 
numbers d2, • • • which tends to 0 there exists a corresponding 
sequence 4- z'/p s2 = <r2+ z72, • • • with am > cr0 and | tm | -> og 
so that

l//(SJl>3l/nir-0"' for
On account of the assumptions we know that to every 7in(s), 

N = 1,2, •• • there exists a positive number such that

|hN(s)| = o(|f|/i_J-v) for a>a0.

We now choose an arbitrary sequence of positive numbers <52, • • • 
which tends to 0 and satisfies the conditions

<52^/li, ó3< min (dt, Zl2), • • • .

Our task is to choose the positive numbers eN<EN in such a 
way that it is possible under the assumption (12) to lind complex 
numbers sm corresponding to the numbers <5m with the above- 
mentioned properties. We shall do this in a sequence of steps.
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First step. We choose a complex number sí = crl-[-ití with 
<rt > cr0, | /L | > 1 so that

At the point s = .$-t the functions /q (s), 7z2(s), • • • assume certain 
values /¡’n, À*l2, • • • . We choose the positive constants eit<Et, 
e12 < /1'2, • • • so that

1 .
is convergent with sum • Then for ()<ev<e1N
(N = 1,2, • • •) we have

I w (»1) I > I />o WI e1Nl k1N 1 > h Í! I'*“'’1-

N = 1 ¿

Second step. We choose s2 = <r2 + z/2 with <r2 > ít0, | /2 | > 2 so that

l/10(s2)l>li2l'‘-'s-

and al the same time

The latter inequality may be obtained since ó2<Zl1. At the 
point s = s2 the functions /z2 (s), Zi3 (.$), • • • assume certain values 
/c22, ^23»’ ' ’ • choose the positive numbers e22 < E<>, e23 < E3,- • • 
so that

00

^e2N I ^2X I

is convergent with sum <^|/2|Z<_02- Then for 0 < eL < Eit 

0 < en < e2N (N = 2, 3, • • •) we have
00

I W (’ä) I à I ft, (-’2) I - 1711 (s3) I -Z e„ NI A.,NI >
X = 2

mth step. We choose sm = %+ itIH with cni>o-o and |/m|>zn 
so that



28 Nr. 4

and at the same time

i'l 1i>, (»„> I +1--21*» 0„.) ! + ••■ + I (sm) I <i| ij""0'

The latter inequality may he obtained since <5m< min (dt, • • • ,zlni_1). 
At the point sjn the functions hin (s), ^m + 1 («), ‘ ’ assume certain 
values + • • • . We choose positive constants emm< Em,
em,m+i<Em + i>’'- so that

oe

is convergent with sum Then for 0 < < Et, • • •,

0 < em_ ! < » » < «y < emN (N = in, m + 1, • • • ) we have

I H (SrJ I > I /20 (Sm) I — (^1 I 111 (sm) H----------- •" Em-1 I hm-l (Sm) I ) ~

Ve I A- l>|/ I / IM —<5„. ==1), |/z-<5
'mN I hmN I " I 'in I q I 'm I q 1 'm I q I 'm I

N—m •> >’ °

It appears from the above that the numbers
1 

eN = min {e1N, • • • ,eNN} (N=l,2, •••)

may be used in order to satisfy our demands under 2 .
Finally, for each N we choose the smaller one of the two 

numbers eN found under Io and 2° as our final eN. These eN 
satisfy the demands in Lemma 2. This completes the proof of 
Lemma 2.

§ 6. Proof of the Main Theorem.

We are now in a position to prove the Main Theorem stated 
in § 1. Since the function /'($) — 0 has a>/t = a>y — Í2 = —oc¡ 
we need only consider the following three cases: (a) wfi — co^ = 
£>—oc, = Ï2>—oo, and the “general” case (y)
^>^^>^> — 00.

As an example of the special case (a) we can obviously use
the series

C(s-Æ+1) =2?nß_1n~s.
i

In fact, the series is absolutely convergent for cr>£?, and the 
function has a pole at s = Q.
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The “intermediate” case (ß) will be treated at the end of this 
section by specializing, and slightly modifying, the construction 
used in the “general” case (y).

Let us therefore assume for the present that > — oo.
In the main, our Dirichlet series x. Ann~s is constructed by linear 
combination of infinitely many of the “bricks” from §4, i. e. by 
linear combination of Dirichlet series whose summability function 
and order function have the form {ta1; a) and {co2;a} with common 

a>l and ()< au —co< <- (viz. with the vertical distance from 
a

the ^-half-line to the ¿¿-half-line >0 and < 1). This construction, 
however, requires some caution because we have to build up at 
the same time two convex curves and because each of these 
curves may contain infinitely many vertices, i. e. points with 
different tangents from the right and the left.

We call a pair (7’v, Tfl) of parallel (perhaps coinciding) 
straight lines Tv and T/l a pair of supporting lines (in a general
ized sense) of our y-curve and our ¿¿-curve when one of the 
lines and Ta is a proper supporting line of the corresponding 
curve al a point outside the real axis while the other line is 
defined by the upper position of all lines with the given slope 
which lie under the other curve. If the latter line contains at least 
one point of the curve in question, this line is of course a proper 
supporting line. In any case it is easily seen from the convexity 
of the two curves ip(p) and ¿¿ (er) and the relations ip (a) < ¿¿ (a) < 
ip(a)A~l that the vertical distance from the line to the line Tfl 
is > 0 and < 1. Furthermore, since ip' (wy, — 0) < — 1 and 
¿¿'(co/z — 0) <—1 the slope —a of the two lines is < — 1, i. e. 
a > 1.

We start by choosing a denumerable set of abscissae cq, ct2,- • • 
which lie everywhere dense in the interval £}<a<wfl. These 
abscissae are chosen arbitrarily with the exception that we do 
not use any abscissa o al which any of the functions ip (a) and 
p(a) has different derivatives from the left and the right (i. e. 
which corresponds to a vertex on any of the two curves). For 
each of the above chosen abscissae a. which lie in the sub-interval 
Q < a < coy of Q < o < co/t we consider both the supporting line 
Sf of the y’-curve al the point (o¡,ip (aß } íHid the supporting line 
of the ¿¿-curve al the point (<q,¿¿(<q)). For each of the abscissae
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ai of the above chosen sequence which | if co^ < co/t) lie in the 
complementary sub-interval < a < wfl of Q<a<(o/i we con
sider only the supporting line Sf¡ of the /¿-curve al the point 
The supporting lines and (in the first case) SV are uniquely 
determined since none of the two curves has a vertex at a point af. 
For each of the abscissae ai which lie in the interval Í2 < a < 
we now determine two pairs of supporting lines (Tv’, 7'") (which 
may coincide), one pair being determined by Tv = SV, the other 
pair by T!< — • For the first pair we mark the point (o\))
on the line = S'f; for the second pair we mark the point
(,/z (o-j)) on the line T/l = S“. For each of the abscissae ai which 
(if m1/)< lie in the interval co^ < a < co/t we determine one pair 
of supporting lines ( T*, T'1), namely the pair defined by T/l = S^, 
and for this pair we mark the point (¿r-,/z (g^)) on the line 
T,i = S". We arrange the pairs of supporting lines (tv, Tfl) thus 
obtained (for each of our abscissae either one or two pairs) in 
a sequence

(T/, 7’‘)•

As mentioned above, we have marked for each of these pairs 
a point on one of its lines, 7n/ or 7,/<. If we do not take notice of 
the marked points, it is evident that some of our pairs of sup
porting lines may coincide. (If for instance both the y-curve and 
the /¿-curve are of the type {co; a} with the same a, then all our 
pairs of supporting lines will be identical.) If such a coincidence 
between pairs occurs we shall only keep one of the coinciding 
pairs, but at the same time we shall change the point marking 
of the pairs according to the following specification. Let us assume 
that the pairs of supporting lines

coincide.—For orientation we note that this sequence can either 
contain just two pairs of supporting lines, one with point-marking 
on the line Tv, the other with point-marking on the line Tfl, or 
the sequence will contain infinitely many pairs of supporting 
lines. This latter case will only occur when al least one of the 
curves y>(o-) or /¿(o') contains a straight segment outside the axis 
of abscissa.—As mentioned above, we keep only one of these 
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pairs, but we now mark more points on the pair, namely all 
points on its 7’^-line which are marked on one of the lines 

’ as we^ as a^ points on its T^-line which are mar- 
ked on one of the lines 7’^ , 7'^ , • • • . If more than one point is 
marked on the line we arrange these points in a sequence; 
analogously, if more than one point is marked on the line V we 
arrange these points in a sequence.

The set of pairs of supporting lines (with their arranged mar
ked points) obtained by the above procedure is now arranged in 
a (finite or infinite) sequence

It is plain that each of our abscissae cq which lie in the interval 
<? < a < w,,, will occur as abscissa of a marked point on one of 
our lines Tv as well as on one of our lines 7'/¿, while each of 
the abscissae cr which (if lie in the interval co^< cr<
will occur as abscissa of a marked point on one of our lines 7'/¿.

For these pairs of supporting lines we introduce “bricks” in 
t accordance with §4, i.e. Dirichlet series

l\ CO =Z <*’ " 4 (0 =Z o‘.2) n~s. • • •. fN (0 =Z <N) " C • • •

such that those parts of the ^-function and the /.¿-function of the 
series /\-(s) where these functions are positive are determined 
by the half lines over the real axis which lie on 7”(’ and Tfa, 
respectively. This is possible since the slope —aN of the two lines 
is <— 1 and the vertical distance from to T1^ is ¡^0 and < 1 .

The series we are going to construct is formed by linear 
combination of these series ft (s),f2(s),‘ • • ; in fact, it has the form

F (s) — /; (s) + e2 /2 (s) 4------- F eN fN (s) 4----- =¿' An n~s,
oc

where 4 = gv We shall show that we can choose the 
N = 1

positive numbers e1,e2,--- so that /j (•O + «a Æ (s) H----- is re
presented by a Dirichlet series 4;è n~s which for o>Q has its 
summability function P (a) equal to the given function ip (a) and 
its order function M(a) equal to the given function /¿(or). How
ever, when Q> — oc we cannot always be sure that our construe
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lion yields a function F(s) which does not have a limit abscissa 
of summability smaller than the given number Q.

In order to obtain the said properties of F(s) it is enough to 
prove, first, that the summability function V7(cr) of F (s') satisfies 
the equation ^(o.) — ip(af) for those of our which lie in the 
internal Q<a<col/, (this includes that &F must be < P) and, 
secondly, that the order function M (a) of F(s) satisfies the equation 
M (a f) — pt (cr f) for all our a.. In fact, the abscissae o¡ lie every
where dense in the interval Q < a < (ofl; so for reasons of conti
nuity we may conclude that the equations

V7(a) = ip (a) and M(a) = pi (a)

hold in the intervals Ï2<c<wy and £?<cr<co^, respectively ; 
furthermore, since V7 (w^) — ip (w^) = 0 and M(m/() = pi (wfl) — 0, 
we get ÿ7(a) = 0 = ip (a) for o > co^, and M (a) = 0 — pi (a) for 
a>w/t so that the above equations will hold in the whole interval 
Q < a < oc.

We remarked above that the constructed function F(s) when 
Q> — oc might have QF<Q and not QF = £? as desired.

There are some cases with Í? > ~ oc when automatically 
QF =Q, namely when (o’— 0)-> — oc or /Z (a— 0) —>■— oc for 

In fact, it is impossible in these cases to prolong the given 
ip- and /¿-curve to the left under preservation of their convexity, 
so that we can be sure that the constructed function F(s) will 
have &F = £? as desired.

In the other cases with Q > — oc we can prolong the ip- and 
the /¿-curve to the whole interval —oc < o<oc under preservation 
of all the properties demanded in the theorem, for instance by 
two parallel half lines with a common slope < min /lim ip' (a— 0),

\a + i2
lim /¿' (o— 0)\.This we do before passing to the construction of 
a+Q /
F(s), i.e. before choosing our

The function F(s) obtained will then be an entire function 
with these prolonged functions (o’) and /¿ (cr) as its summability 
function and order function, respectively. In order to obtain a func
tion F* (s) from F(s) which has the right Í2 and without changing 
the ÿ'-curve and the M-curve for cr > £2 we may for instance add 
the function
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C(s-ß+ 1)

In this way we obtain a function F* (s) with all the desired 
properties.

We now pass to the actual construction of F(.$) referred to 
above. We determine the positive numbers £x = £*, £2 = £*, • • • 
successively by the following procedure.

First step. We choose = e:¿' as an arbitrary positive number. 
We consider the pair of supporting lines belonging to
/’i (.$•) with its marked points and distinguish between the following 
three cases.

1 . There exist marked points on the line T^’, but not on the 
line If only one marked point is lying on we denote its 
abscissa by <t0 (where Æ < a0 < co^,). If infinitely many marked 
points lie on 7^’ we denote by cr0 (where £?< <r0< ío^) the abscissa 
of that point on 7’JZ' which comes first in the given ordering 
of the marked points on 7y’. In the present case we are only 
interested in the ^-function al the point <r0, and not in the 
M-function al this point.

We pul the demand on the sequence £2,£;l,*** that

(1) F(.s) = £* /; (s) + e2 f2 (s) + e3 ß (5) 4----- =2? /i ,,f

is to have V7 (<r0) = (<t0) . In other words, we demand that the 
rj)h abscissa of summability Ar of F (s) where r0 denotes the 
positive number y> (<r0) is exactly equal to <t0. We apply Lemma 1 
of § 5 to the functions

i/o (s) = 4 A (s), f/l (s) = /2 (s), </2 (s) = /:( (s), • • •

and the numbers A = cr0 and /• = r0 just determined. The support
ing lines Zyy, 7’y’j, • • • of the y’-curve cut the line a = a0 below 
the point (cr0, y>(o-0)) (because the point (<r0» V (CTo)) ’s 110 vertex 
on the V’-curve). Hence the abscissa of summability ol the 
series </1 (s), </2(s), • • • all lie to the left of <t0 while the Cq11 abscissa 
of summability of <70 (s) is equal to o-0. Il follows from Lemma 1 
that there exist positive constants r22, e23, • ■ • with the property 
that the function (1) for 0 < £2 < e22, 0 < fi3 < e23, • • • has its r^h 
abscissa of summability equal to o-0, as desired.

Dan.Mat.Fys.Medd. 27, no.4. 3
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2°. There exist marked points on the line hut no marked 
points on the line 7’^- If only one marked point is lying on 
we denote its abscissa by cr0 (where Q < a() < (o/t). If infinitely 
many marked point lie on 7^ we denote by or() (where £?< < æ/t)
the abscissa of that point on 7’'/ which comes first in the given 
ordering of the marked points on 7’^. In the present case we are 
only interested in the ^/-function at the point zt0, and not in the 
’/-'-function at this point.

We put the demand on the sequence f2, f3, • • • that the func
tion (1) must be regular for a > tr0 and have M ((To) — /< (u0) . 
In other words, we demand that the function (1) is to be regular 
in the half plane a > tr0 and in this half plane have (exactly) the 
order of magnitude /z0, where /z0 = /z (a0) > 0. We apply Lemma 2 
of § 5 to the functions

/i0 (s) = ef (s), /¡t (s) = f2 (s'), /i2 (s) = /*3 (s), • • •

and the numbers a0 and //0 just determined. The supporting lines 
7’^, ^ni’ ‘ ' cul l’ie *’ne ° ~ ffo below the point (zr0,/z (<r0) ) (be
cause the point (a0,//(<70)) is no vertex on the //-curve). Hence 
the orders of magnitude of the functions /q (s),/z2 (s), • • • in the 
half plane a > zt0 are all </z0, while the order of magnitude of 
the function 7z0 (s) in the half plane cr > cr0 is equal to /z0. It follows 
from Lemma 2 that there exist positive constants e22, e23, • • • with 
the property that the function (1) for 0 < e2 < e22, 0 < f3 < e23, • • • 
is regular in the half plane a > <r0 and has the order of magnitude 
/z() in this half plane, as desired.

3°. There exist marked points on the line as well as on 
the line 7’^. We consider two abscissae </0 and o-'0' (they may coin
cide) where o'Q denotes the abscissa of the marked point or the 
first of the marked points on the line 7^’ while denotes the 
abscissa of the marked point or the first of the marked points 
on the line 7’/I/. By exactly the same considerations as under 1 
and 2°, using the first time Lemma 1 and the second time Lemma 2, 
we find two sequences of positive numbers e'22,e23»,,‘ and 
e22,e23,• ’ ’ such that the function (1) for 0<e2<e22,<£3<e23,- • •, 
where e2/. = min (e2y, e2y) has V7 (zr'o) = y> (a'o), is regular for 
a > o’,), and has M(ct'o') = /z (cq).

Summarizing, we have by this first step found a positive
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constant e* and positive constants e22, <’23, • • • such that the func
tion (1) for 0 < e2 < e22, 0 < e3< e23, • • • has the properly that its 
if'-curve will pass through the marked point or the first of the 

* marked points on 7’^ (if such points exist) and the M-curve will
pass through the marked ¡joint or the first oT the marked points 
on (if such points exist).

Nth step. (N>2). We assume that by the 1st, 2nd,• • - , (N—l)lh 
step we have determined positive constants £*, e2,•••, and 
(by the (N—l)th step) positive constants eN ¡(j — N, N1 ,• • •) 
such that the function

*'(*) = £-7t (s) +---- f-£^_1 /N-1 (s) + en fN (s) +
(2) . V-

+ SN + 1 /n + 1 + ’ ’ ’ ~^^nn

for 0<fiN<eNJV, 0<eN + 1<eNJV + 1,-• • has the property that 
its V'-curve passes through the first N—1 of the marked points 
on TV, through the first N—2 of the marked ¡joints on T^, • • •, 
through the first of the marked points on 7’^_1, and that its 
M-curve passes through the first N—1 of the marked points on 
7^, through the first N—2 of the marked points on T^v • • • , 
through the first of the marked points on • It is plain how 
this is to be understood when one of the supporting lines TV or 
T/< only has one marked point or none at all.

We choose an arbitrary constant in the interval 0 < en < eNN 
and shall show that we can find positive constants eN+1 N + 1< 
eN,N+l' eN+i,N + 2< eN,N + 2’ ’ ' ' SUch l,iat llie function

F(.s) = e* /; (.<?)+•••+ £* fN (s) + eN + 1fN + 1 (s) +
(3)

+ + 2 + 2 -------- =2Xi « -S

for 0<£N + 1 <eN+1 N + 1,0 <£N + 2< eN + 1JV + 2, • • • has the pro
perty that its ï'-curve passes through the first N of the marked 
¡joints on 7’’/’, through the first N—1 of the marked points on 
7’j^p • • - , through the first of the marked points on 7'$, and that 
its AZ-curve passes through the first N of the marked points on 
7^, through the first N—1 of the marked points on T^,• • •, 
through the first of the marked points on 7’^.

3*
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IL is evident that the conclusion from the (N—l)lh step still 
holds good under the new conditions since

0<£*<eNN and 0 < < eN + 1>/< eN(. (,/= N+1, N+2,• • •).

Thus we have only to make sure that the ’P-curve (M-curve) 
passes through the A7*11 marked point on 7’’/' (7Y), through the 
(N— l)lh marked point on 7’ft ( 7^), • • •, through the first marked 
point on 7X (7’ft).

We consider the J111 pair of supporting lines ( 7'^, 7’^) 
(.l=ï, II,- --,N). Let er,) (where Í2 < cr¡, < col/;) and ct'J (where 
£? < c/0'< oj/z) denote the abscissae of the (A7-)-l-./)th marked 
point on the lines 7’^ and 7j, respectively (if they exist).

First, we put the demand on the sequence eN i’£Nt2’’"‘ 
that the function (3) (if a'o exists) has W (</0) = ip (<r'o). In other 
words, we demand that the rj/1 abscissa of summability Ar of 
F{s), where r0 denotes the positive number y>(</0), is exactly 
equal to </0. We apply Lemma 1 of § 5 to the functions

f/d GO = A GO 4----- H £j [j GO 4------b fN (-0 »
171 GO = /n+1 0)’ #2 GO = /n + 20)» • • •

E

and the numbers A = o'Q and /• = r0 just determined. The sup
porting lines 77> (P + ./) of the y-curve cut the line c = o’,, below 
the point (0'0, fp (o'{)) ) (because the point (a„, ip (cr'o)) ls n0 vertex 
on the y-curve). Hence the r^h abscissae of summability of the 
series fp(s), P + J, all lie to the left of </0, while the rf,11 abscissa 
of summability of fj(s) is equal to ct(). Il follows immediately 
that the Pq11 abscissa of summability of <70(s) is equal to </0, while 
the Pq1 abscissae of summability of </i (s) » S^CO»"’- are smaller 
than </(,. Il follows from Lemma 1 that there exist positive con
stants' e'v+i jv + 1, N + 2»’ ‘ ' w4h the properly that the func
tion (3) loi 0 <Z Epj_|_ j < + 1, n +1 ’ 0 < + 2 <~' 4-1 , n + 2’ ' has
its r{jh abscissa of summability /lr equal to o-'n.

Next, we pul the demand on the sequence eA, + p en + 2,‘ • • that 
the function (3) (if cr'()' exists) must be regular for a > t/J and 
have M(a'o') = /z(<7q). In other words, we demand that the func
tion (3) is to be regular in the half plane a > a\\ and in this half 
plane have (exactly) the order of magnitude //0 where /<0 — pc (a"^ > 0. 
We apply Lemma 2 of § 5 to the functions

1

*



Nr. 4

h0 (s) = ef A GO H------- H tf fj (04------- F «N !n GO»

/ll GO = fN + 1 (s) » /j2 (-0 = fN+ 2 ‘
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and the numbers er,, and /.¿0 just determined. The supporting lines 
7’^, P + J, cut the line a — <r'o' below the point (t/J, /j, (o-'n)) (because 
the point ((t'J,//(cr'o')) ’s no vertex on the //-curve). Hence the 
orders of magnitude of the functions fp(s) in the half plane 
a > a'o' for P + J are smaller than /z0, while the function fj(s) in 
the half plane a > g'q has the order of magnitude //0. Il follows 
immediately that the order of magnitude of the function h0 (s) in 
the half plane a > ít'o' is equal to /¿0, while the orders of magnitude 
of the functions /q (0> 7j2 GO, • • • hi the half plane o>o” arc 
smaller than z/0. It follows from Lemma 2 that there exist positive 
constants 7f^ + 1 ni i’ Vvi i n + 2»*” with the property that the 
function (3) for 0 < fiN +j < Je" + 1N +j, 0 <eN + 2< Je^ + 1N + 2,- • • 
is regular for o > o\\ an(i has M(aj) = //(a'o').

It follows from the above that the numbers

Gv i i, j ~ min { leA, +1(y, • • ’ ,NGv +1,/’ + i, / ’ ' ' ’ ’ VGv + i, J }

(j-N+l.N+2,---)

have the desired properties (under step N).

The conclusion is still missing, namely that the sequence 
t ji;, e£, • • • found above is such that the function

(4) F (s) = s't fi GO + 4 f2 (s) -I----- „ n s

has the desired properties. This, however, follows at once from 
the remark that

h < + 1 < Gv + 1, N + 1 = Gv, N + 1

< E\' + 2 < 2,^ + 2^- 1, ,V + 2 4 Gv, N + 2

so that (4) gets the properties of (3) from the arbitrary step 
N (N= 1,2, •••), q-e.d.

This completes the proof of the Main Theorem in the “general” 
case (y) co/t > > Í2 > — oo.
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The remaining case (ß) c»fl > a>v = Í2 > — oc can be treated in 
a similar way as the general case. However, a small modification 
is necessary, dne to the fact that the y-curve does not leave the 
real axis, but consists of the interval £? < a < oe on the real axis. 
If we are in a case where the pair of functions and /¿(o') 
can be prolonged no modification is of course necessary since 
the prolonged curves fall under case (y). In any case, the “bricks” 
A(s)> fzts)' ' ' are obtained in the same way as before, but if we 
proceed as before (in the case where ip (a) and /¿(a) could not 
be prolonged) by the determination of the numbers ef, ef,• • • it 
is plain, since no marked points occur on the lines T1' of our 
pairs of supporting lines (TJJ, 7’{[J, that we have taken care only 
of the ^/-function, but not of the ’¿'-function. However, from the 
determination of the pairs (7$, 7^) it follows that all the Dirich
let series fN(s) are convergent for <r>í?, for all the lines 7”(, 
pass through the end-point Í2 of the y-curve.

In order to obtain that (4) also becomes convergent for a >12, 
and hence '/z (a) — () for a> Í2 as desired, we choose a sequence 
cr* > > ' ’ • &• By our first step we add the demand to the 
previous demands that (1) is also to be convergent for s = af, 
and in order to obtain this situation we use a result obtained in 
the first part of the proof of Lemma 1 in the case /■ = (), namely 
the result that if the Dirichlet series (s), ff2(s)>' * ' are summable 
of the rlh order at the point s = A, then the positive numbers 
c1,e2,--- can be chosen so that the Dirichlet series G* (s) = 
ei .91 (s) + e2.92 Gs‘) + • • • =£ B* n~s becomes summable of the rlh 
order at the point s — A when only ()<£1<e1, 0 < e2 < e2,• • •. 
In our .Vth step we add the demand to the previous demands 
that (3) is also to be convergent for s = Except for this 
slight modification our previous method remains unchanged.

Thus the proof of our Main Theorem is completed.
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